Norges Teknisk-naturvitenskapelige Universitet

نویسندگان

  • Javad Rezaie
  • Jo Eidsvik
چکیده

State estimation in high dimensional systems remains a challenging part of real time analysis. The ensemble Kalman filter addresses this challenge by using Gaussian approximations constructed from a number of samples. This method has been a large success in many applications. Unfortunately, for some cases, Gaussian approximations are no longer valid and the filter does not work so well. In this paper we use the idea of the ensemble Kalman filter together with the more theoretical particle filter. We outline a Gaussian mixture approach based on shrinking the predicted samples to overcome sample degeneracy, while maintaining non-Gaussian nature. A tuning parameter determines the degree of shrinkage. The computational cost is similar to the ensemble Kalman filter. We compare several filter methods on three different cases, a target tracking model, the Lorenz 40 model, and a reservoir simulation example conditional on seismic and electromagnetic data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Norges Teknisk-naturvitenskapelige Universitet Fakultet for Informasjonsteknologi, Matematikk Og Elektroteknikk Hovedoppgave

.........................................................................................................................I PREFACE........................................................................................................................... II TABLE OF CONTENTS................................................................................................... III

متن کامل

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET A method of parametric solution of convolution equations

A variant of the method of moments is developed for parametric solution of convolution equations of the first kind. Two models — the gamma model and the shifted gamma model — are studied in details.

متن کامل

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Implementing Approximate Bayesian Inference using Integrated Nested Laplace Approximation: a manual for the inla program

This manual describes the inla program, a new instrument which allows the user to easily perform approximate Bayesian inference using integrated nested Laplace approximation (INLA). We describe the set of models which can be solved by the inla program and provide a series of worked out examples illustrating its usage in details. Appendix A contains a reference manual for the inla program. This ...

متن کامل

NORGES TEKNISK - NATURVITENSKAPELIGE UNIVERSITET Bayesian computing with INLA : new features by Thiago

The INLA approach for approximate Bayesian inference for latent Gaussian models has been shown to give fast and accurate estimates of posterior marginals and also to be a valuable tool in practice via the R-package R-INLA. In this paper we formalize new developments in the R-INLA package and show how these features greatly extend the scope of models that can be analyzed by this interface. We al...

متن کامل

Norges Teknisk-naturvitenskapelige Universitet Cost Efficient Lie Group Integrators in the Rkmk Class Cost Efficient Lie Group Integrators in the Rkmk Class

In this work a systematic procedure is implemented in order to minimise the computational cost of the Runge–Kutta–Munthe-Kaas (RKMK) class of Lie-group solvers. The process consists of the application of a linear transformation to the stages of the method and the analysis of a graded free Lie algebra to reduce the number of commutators involved. We consider here RKMK integration methods up to o...

متن کامل

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Parameter Estimation in High Dimensional Gaussian Distributions

In order to compute the log-likelihood for high dimensional Gaussian models, it is necessary to compute the determinant of the large, sparse, symmetric positive definite precision matrix. Traditional methods for evaluating the log-likelihood, which are typically based on Choleksy factorisations, are not feasible for very large models due to the massive memory requirements. We present a novel ap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011